
Clustering Partial Lexicographic Preference Trees

Joseph Allen, Xudong Liu, Karthikeyan Umapathy, Sandeep Reddivari
School of Computing, University of North Florida

{n01045721, xudong.liu, k.umapathy, sandeep.reddivari}@unf.edu

Abstract

In this work, we consider the problem of clustering partial
lexicographic preference trees (PLP-trees), intuitive and of-
ten compact representations of user preferences over multi-
valued attributes. Due to the preordering nature of PLP-trees,
we define a variant of Kendall’s τ distance metric to be used
to compute distances between PLP-trees for clustering. To
this end, extending the previous work by Li and Kazimipour
(Li and Kazimipour 2018), we propose a polynomial time al-
gorithm PlpDis to compute such distances, and present em-
pirical results comparing it against the brute-force baseline.
Based on PlpDis, we use various distance-based clustering
methods to cluster PLP-trees learned from a car evaluation
dataset. Our experiments show that hierarchical agglomera-
tive nesting (AGNES) is the best choice for clustering PLP-
trees, and that the single-linkage variant of AGNES is the best
fit for clustering large numbers of trees.

Introduction
Understanding the decision patterns of users and modeling
their preferences is an important problem in artificial intel-
ligence and has received a lot of attention in recent years. A
myriad of models for the task of preference representation
have been proposed, at the frontier of which are partial lex-
icographic preference trees (PLP-trees, for short) (Liu and
Truszczynski 2015), and conditional preference networks
(CP-nets) (Boutilier et al. 2004). PLP-trees are particularly
interesting, for they can succinctly encode a total preorder
(i.e., a binary relation that is total, reflective, and transitive)
of exponentially many alternatives into the structure of an
often compact tree. CP-nets also provide an intuitive encod-
ing with the ceteris paribus semantics, but they generally are
computationally hard to learn and reason about. For this rea-
son we focus on PLP-trees, which show great potential as
effective and explainable models.

PLP-trees are useful for modeling individual preferences.
Meanwhile, being able to cluster and reason about col-
lections of preferences is critical to various research ar-
eas, such as recommender systems, marketing, and human-
centric machine learning. Clustering a set of entities typi-
cally relies on computing distances between them. Examples

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of distance-based metrics are Euclidean distance, Spear-
man’s ρ, and Kendall’s τ . Because PLP-trees induce total
preorders over alternatives, we focus on Kendall’s τ .

Clearly, one may use the straightforward brute-force al-
gorithm to compute τ ; however, due to the exponentiality
of the space of alternatives, this direct method practically is
infeasible. Recently, Li and Kazimipour (Li and Kazimipour
2018) proposed a computationally efficient algorithm, called
LpDis, that utilizes the tree structures to compute τ in time
polynomial in the size of the two given trees.

However, their results are limited to complete models,
trees that require every attribute to be present in every
branch. On the contrary, PLP-trees allow for missing at-
tributes, thus encoding total preorders, as opposed to to-
tal orders, and allow for more concise preference repre-
sentations. To this end, we study the clustering problem of
PLP-trees. At the core of this problem, we investigate the
problem of computing Kendall’s τ distance and propose a
new polynomial time algorithm PlpDis, an extension to the
LpDis algorithm. In the remainder of this paper, we provide
necessary preliminaries, define a variant of Kendall’s τ for
PLP-trees and describe our PlpDis algorithm that accom-
modates partial trees, present results on PLP-tree clustering
with PlpDis as the distance measure, and point out future
research directions.

Partial Lexicographic Preference Trees
Let V = {X1, ..., Xn} be a set of n categorical attributes
with each Xi ∈ V having a finite domain of values Di =
{xi1, . . . , ximi

}. The combinatorial domain CD(V) over V
is the Cartesian product D1 × . . . × Dn. We call elements
of CD(V) alternatives. A PLP-tree over V is an ordered la-
beled tree where every non-leaf node 1) is labeled with an at-
tribute Xi from V , 2) has a local preference >i (a total order
over Di), and 3) has |Di| outgoing edges ordered from left
to right according to >i. Additionally, each attribute from V
appears at most once in any branch of the tree. We denote a
leaf node with �, indicating a bucket of alternatives.

We compute the distance between PLP-trees by consid-
ering the disagreements between the orders they represent.
Let T1 and T2 be two PLP-trees (equivalently, two total pre-
orders), and α and β two distinct alternatives from CD(V).
The ordering of α and β on T1 and T2 either strictly agree,
strictly disagree, or partially disagree. Strict agreement oc-

curs when in both T1 and T2 either α � β, β � α, or α ≈ β,
where � means strict preference and ≈ means equivalence.
Strict disagreement occurs when in T1 we have α � β and in
T2 β � α, or vice versa. Partial disagreement occurs when
in T1 α ≈ β and in T2 α 6≈ β (α � β or β � α), or vice
versa. Examples and detailed discussion on the semantics,
classes, and notations of PLP-trees follow in the next three
sections.

An Example of PLP-trees
Let us consider a domain of cars specified using four bi-
nary attributes: BodyType (B): sedan (s) and sport (r), Make
(M): Honda (h) and Ford (f), Price (P): low (l) and high
(g), and Transmission (T): automatic (a) and manual (m).

The PLP-tree in Figure 1e bears the following user pref-
erences. The most important attribute for the user is Body-
Type, for which she prefers sedan to sport. Among sedan
cars, the most important attribute is Make and the user
prefers Honda over Ford. Similarly, among sport cars, the
most important is Transmission and manual is better than
automatic for the user. Moreover, among the Honda sedans,
the user’s most important attribute is Transmission, on which
automatic is better than manual. On the other hand, among
the automatic sport cars, her most important attribute to con-
sider is Make and she likes Ford more than Honda.

P l>g

Bs>r B s>r

(a) Collapsible PLP-tree

P

B

l>g

s>r

(b) UI-UP tree

B r>s

Tm>a T a>m

(c) Collapsible PLP-tree

B

T

r>s

r :m>a

s :a>m

(d) UI-CP tree

B s>r

M
h>f

Ta>m

T m>a

M
f >h

(e) CI tree

Figure 1: PLP-trees over the car domain

Semantics of PLP-trees
We see that non-leaf nodes in a PLP-tree are to partition the
space of alternatives into groups of them. Non-leaf nodes
further down in the PLP-tree refine this partitioning. In other

words, given an alternative and a PLP-tree, one may traverse
the tree from the root down to some leaf: when at a node,
descend to the left child if the alternative has the preferred
value on that node, or to the right child, otherwise. A leaf
node, therefore, represents a group of alternatives descend-
ing to it.

Indexing the leaves from the left most one with 1, 2, . . .,
we now can define the preference relation induced by a PLP-
tree. Let α and β be two alternatives, and lT (α) and lT (β)
their leaf indices in PLP-tree T . We define that α is at least
as good as β (denoted α �T β) if lT (α) ≤ lT (β), that α is
strictly better than β (denoted α �T β) if lT (α) < lT (β),
and that α is equivalent with β (denoted α ≈T β) if lT (α) =
lT (β). Clearly, relation �T is a total preorder that is total,
reflective and transitive.

Classifications of PLP-trees
Exploring the tree structures and the local preferences on
nodes, we introduce different classes of PLP-trees. (Our
classification of PLP-trees is a slight variant of the proposed
by Liu and Truszczynski (Liu and Truszczynski 2015).)
When the tree structure is complete, i.e., every level is full,
and the nodes per the same level are all labeled by the same
attribute, we collapse the tree so that the tree is simplified to
a linear path, dramatically reducing the size of the tree. The
collapsed tree is called an unconditional importance tree, or
UI tree. During this collapsing, one question is about what
to do with the local preferences. If the preferences on the
attributes per the same level are unanimous, the same pref-
erence rule then is used to label the attribute in the UI tree.
(The resulting tree is called a UI and unconditional prefer-
ence tree, or UI-UP tree, for short.) If, however, the pref-
erences per the same level are different, then a conditional
preference table (CPT) is created and used as the label. This
resulting tree is called a UI and conditional preference tree,
or UI-CP tree. The CPT consists of preference rules of form
u : a > b that expresses that, conditioned on u, the evalua-
tions of parent attributes, the user prefers a to b on the label-
ing attribute. Examples of a UI-UP and UI-CP tree and their
full versions over the car domain are shown in Figure 1b and
Figure 1d, respectively. Other PLP-trees that are not UI trees
are called conditional importance trees, or CI trees. Notably,
given a PLP-tree T of any class and two alternatives α and
β, deciding if α �T β or α ≈T β can be done in time linear
in the size of T .

More Notations in PLP-trees
Let T be a PLP-tree of any class in {UI−UP,UI−CP,CI},
and n a node in T . We denote by A node n’s ancestor at-
tributes to be the collection of attributes labeling the ances-
tors of n, by B node n’s branching attributes to be the set
of attributes labeling those ancestors with multiple children
nodes, by P node n’s parent attributes to be the set of at-
tributes forming the conditions in the CPT at n.

For instance, in Figure 1d, for the node labeled by at-
tribute T , we have A = {B}, B = ∅, and P = {B}. In
Figure 1e, for the node labeled by attribute M and prefer-
ence rule f > h, we have A = {B, T}, B = {B, T}, and
P = ∅.

We say two nodes from two PLP-trees are consistent if
they assign the same value to all common branching ances-
tor attributes. Let b[B] and b′[B′] denote the value assign-
ments, b and b′, to the branching ancestor attribute sets B
and B′ for two nodes n and n′, respectively. Formally, n
and n′ are consistent if b[B ∩ B′] = b′[B ∩ B′]. Clearly n
and n′ are consistent if B ∩B′ = ∅.

Distance Between PLP-trees
We see that the distance between PLP-trees involves par-
tial disagreements that are not accounted for in the regu-
lar definition of Kendall’s τ . Thus, we first define a variant
Kendall’s τ , called partial Kendall’s τ , denoted as τ ′. Let
SDT1,T2

, and PDT1,T2
be the set of pairs of alternatives on

which T1 and T2 strictly disagree and partially disagree, re-
spectively. The metric τ ′ is then the weighted sum:

τ ′(T1, T2) = c1 ∗ |SDT1,T2
|+ c2 ∗ |PDT1,T2

|, (1)

where c1 and c2 are two constant coefficients that may be
adjusted based on which of the disagreement type is favored
over the other.

Clearly, computing τ ′(T1, T2) boils down to counting the
pairs in SDT1,T2 and PDT1,T2 . We can compute the number
of strict disagreements between two PLP-trees, |SDT1,T2

|,
using the LpDis algorithm (Li and Kazimipour 2018). To
compute |SDT1,T2

|, for every non-leaf node n in T1 we tra-
verse every non-leaf node n′ in T2 and accumulate |SDn,n′ |.
Equivalently, we compute

∑
n∈T1,n′∈T2

|SDn,n′ |. Due to
space constraint, we refer the reader to the LpDis paper for
details about the traversal and the equations used to compute
|SDn,n′ |.

We now present the equation for computing |PDT1,T2
|,

the novel contribution in our PlpDis algorithm. To compute
|PDT1,T2

|, we extend the LpDis traversal down to the leaves
in both trees and compute the number of alternative pairs de-
cided both at a leaf node in one tree and at a non-leaf node
in the other, which we denote by |Pn ∩ Pn′ |. Thus, we have
|PDT1,T2 | =

∑
n∈T1,n′∈T2

|Pn∩Pn′ |, where exactly one of
n and n′ is a leaf node. To be decided at a node means that
the preference relation over a pair of alternatives is encoded
by that node of the tree. Since leaf nodes always encode the
relation≈ and non-leaf nodes encode the relation�, accord-
ing to the local preference>, computing |Pn∩Pn′ | gives the
number of partial disagreements. For all distinct pairs of n
and n′ from both trees (w.l.o.g., n is a leaf), if the attribute
labeling n′, Vn′ , is not an ancestor of n and the branching
attributes in both trees are consistent, we have:

|Pn ∩ Pn′ | =
(
|DVn′ |

2

)
×

∏
X∈Ă\B̆

|DX | ×
∏

Y ∈V\(Ă∪{Vn′})

|DY |2 (2)

The first term computes the number of distinct pairs of val-
ues in the domain of Vn′ and the other two terms adjust for
possible values of ancestor and descendant (including miss-
ing) attributes, respectively.

Clearly, our algorithm PlpDis to compute τ ′(T1, T2) runs
in time polynomial in the size of T1 and T2. This follows
from the fact that in the worst case we compare every pair of
nodes between the two trees.

Clustering PLP-trees
With PlpDis defined, we may now reason about collections
of PLP-trees through clustering. Because PlpDis does not
satisfy the triangle inequality d(x, z) ≤ d(x, y) + d(y, z),
we focus on clustering algorithms that utilize distances be-
tween pairs of PLP-trees, i.e., those that take a distance or
similarity matrix as input.

These methods included spectral clustering, affinity prop-
agation, and agglomerative nesting (or AGNES, for short).
Spectral clustering (Ng, Jordan, and Weiss 2002) takes the
similarity matrix as input, computes the spectrum of it to
reduce dimensionality, and clusters the result in fewer di-
mensions with another algorithm such as K-means. Affin-
ity propagation (Frey and Dueck 2007) passes messages
between data points to find representative data points,
called exemplars, to perform clustering. Lastly, AGNES
(Rokach and Maimon 2005) is a bottom-up hierarchi-
cal clustering method that starts with viewing each data
point per se as a cluster and repeatedly finds two clos-
est clusters and merges them. Based on how the dis-
tance is measured between two clusters of data points,
AGNES provides three different variants. Given two clus-
ters Ci and Cj of PLP-trees, we define min distance
to be dmin(Ci, Cj) = min

Ti∈Ci,Tj∈Cj

τ ′(Ti, Tj), max dis-

tance dmax(Ci, Cj) = max
Ti∈Ci,Tj∈Cj

τ ′(Ti, Tj), and average

distance davg(Ci, Cj) = 1
|Ci|·|Cj |

∑
Ti∈Ci

∑
Tj∈Cj

τ ′(Ti, Tj).

AGNES is called single-linkage, if dmin is used as the
distance measure; complete-linkage, if dmax is used; and
average-linkage, if davg is used.

We now define the the Dunn index (DI) and the Davies-
Bouldin index (DBI) which we’ll use to evaluate cluster
quality. The Dunn index is a worst case measurement of the
ratio of the minimum intercluster distance to the maximum
intracluster distance:

DI = min
1≤i≤k

minj 6=i

 davg(Ci, Cj)

max
1≤l≤k

(avg(Cl))


where k is the number of clusters and avg(Cl) is
the intracluster distance for cluster l, avg(Cl) =

1

(|Cl|
2)

∑
Ti,Tj∈(Cl

2)
τ ′(Ti, Tj). The Davies-Bouldin index is

similar, but differs in that it finds a worst case ratio for every
cluster and takes the average:

DBI =
1

k

k∑
i=1

max
j 6=i

(
avg(Ci) + avg(Cj)

davg(Ci, Cj)

)
Intuitively, both cluster indices measure the extent to which
a set of clusters minimize overall intracluster distances while
also maximizing intercluster distances.

Experimental Results
To test PlpDis-powered clustering, we applied the selected
algorithms to the task of clustering PLP-forests, consist-
ing of random mixtures of UI-UP, UI-CP, and CI PLP-
trees, learned from a Car Evaluation dataset1using Liu

Table 1: The DI to DBI ratio for each clustering

Forest Size 100 500 1000 2,500 5,000 10,000
Clusters 4 6 8 14 17 24
Spectral 0.090 0.386 0.387 0.332 DNF DNF
Aff. Prop. 0.337 0.376 0.342 0.317 0.217 0.238
AGNES-A 2.628 3.534 2.172 1.555 1.196 1.323
AGNES-S 2.876 2.157 2.172 2.857 1.888 2.034
AGNES-C 3.393 2.894 2.245 1.176 0.884 0.886

and Truszczynski’s greedy algorithm (Liu and Truszczyn-
ski 2019). In the experiment we learned forests of sizes 100,
500, 1,000, 2,500, 5,000, and 10,000 with each tree learning
from 100 examples. To evaluate cluster quality we used a ra-
tio of DI to DBI , DI/DBI , since higher is better for DI
and lower is better for DBI . In addition to this quantitative
measure, to visually assess cluster quality we constructed
KNN-graphs from the distance matrix and then colored ver-
tices according to each algorithm’s cluster assignments. The
reasoning for this representation follows from the fact that
the distance matrix itself can be seen as a fully-connected
graph. By considering only theK nearest neighbors for each
tree instead, we see that clusters emerge based on connect-
edness. After testing multiple values of K, we set K = 10
since it provided the best visualizations of the clusters for
this experiment. Note that since affinity propagation is the
only algorithm that doesn’t take the number of clusters k as
input, we simply run it first and provide the k it finds to the
other algorithms, but k can also be chosen via search.

The results of these tests are included in Table 1, where
the best score is bolded in each column. Note that “DNF”
in the table for spectral clustering indicates that the algo-
rithm did not finish within a set timeout threshold of 20
minutes. In Figure 2 we show the KNN-graphs from the
test with 1000 trees and 8 clusters for each clustering al-
gorithm. Clearly the visual quality of the clusters in these
graphs supports the numerical results. Overall, all three vari-
ants of AGNES perform better compared to spectral clus-
tering and affinity propagation. AGNES consistently detects
the highly-connected vertices (similar trees) in the KNN-
graphs, but the other methods do not. This trend continues
for all tested forest sizes, with single-linkage taking the lead
for the largest forest sizes (2,500+).

Future Work
Clustering preference models provides significant insights
into decision making and can support many essential appli-
cations, such as understanding demographical distributions
of user preferences and how those preferences change over
time. To this end, we introduced a polynomial algorithm
PlpDis that computes Kendall’s τ distance between PLP-
trees, and presented empirical results using it in combina-
tion with existing clustering methods. For future directions,
we plan to improve the scalability of our implementation to
handle larger numbers of models. We also intend to explore
other preferential datasets as well as visualization techniques
to improve the interactivity of the clustering results.

1www.unf.edu/˜xudong.liu/preflearnlib.html

(a) Spectral Clustering (b) Affinity Propagation

(c) Average Linkage (d) Single Linkage

(e) Complete Linkage

Figure 2: 1000 PLP-tree KNN-Graphs (8 clusters)

References
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Cp-nets: A tool for representing and
reasoning withconditional ceteris paribus preference state-
ments. Journal of artificial intelligence research 21:135–
191.
Frey, B. J., and Dueck, D. 2007. Clustering by passing
messages between data points. science 315(5814):972–976.
Li, M., and Kazimipour, B. 2018. An efficient algorithm
to compute distance between lexicographic preference trees.
In IJCAI, 1898–1904.
Liu, X., and Truszczynski, M. 2015. Learning partial lex-
icographic preference trees over combinatorial domains. In
Proceedings of the 29th AAAI Conference on Artificial Intel-
ligence (AAAI), 1539–1545. AAAI Press.
Liu, X., and Truszczynski, M. 2019. Voting-based ensem-
ble learning for partial lexicographic preference forests over
combinatorial domains. Annals of Mathematics and Artifi-
cial Intelligence 87:137–155.
Ng, A. Y.; Jordan, M. I.; and Weiss, Y. 2002. On spectral
clustering: Analysis and an algorithm. In Advances in neural
information processing systems, 849–856.
Rokach, L., and Maimon, O. 2005. Clustering methods. In
Data mining and knowledge discovery handbook. Springer.
321–352.

